

SAW Components

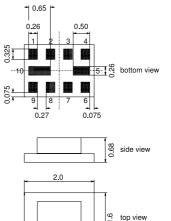
SAW Tx 2in1 Filter WCDMA band I / WCDMA band V

Series/type:B9315Ordering code:B39202B9315N410

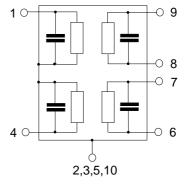
Date: Version: June 16, 2006 2.0

© EPCOS AG 2006. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

SAW Components		B9315
SAW Tx 2in1 Filter		1950.0 / 836.5 MHz
Data sheet	SMD	


Data sheet Application

- Low-loss RF dual band filter for mobile telephone WCDMA band I and band V systems, transmit path (TX)
- Usable passband: Filter 1 (Band V): 25 MHz Filter 2 (Band I): 60 MHz
- Balanced to unbalanced operation for both filters
- Impedance transformation from 100 Ω to 50 Ω both filters)


Features

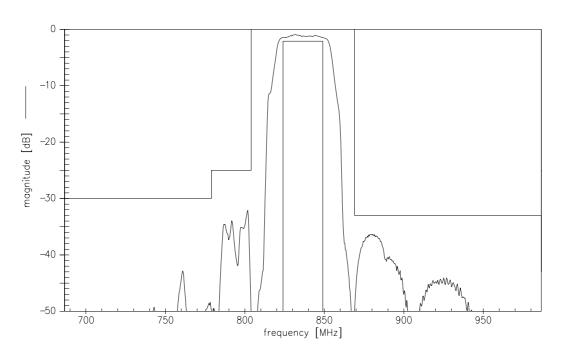
- Package size 2.0 x1.6 x 0.68 mm³
- Package code QCS10I
- RoHS compatible
- Approximate weight 0.007 g
- Package for Surface Mount Technology (SMT)
- Ni, gold-plated terminals
- Electrostatic Sensitive Device (ESD)

Pin configuration

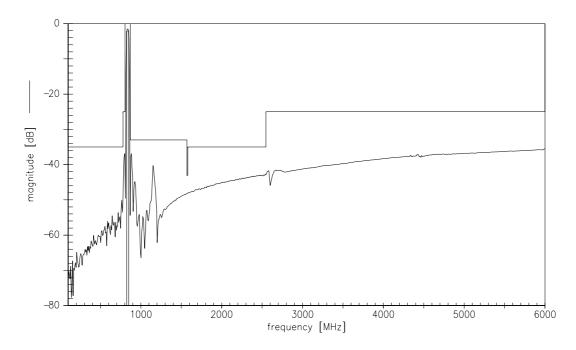
- 1 Output unbalanced filter 1 (Band V)
- 4 Output unbalanced filter 2 (Band I)
- 6,7 Input balanced filter 2 (Band I)
- Input balanced filter 1 (Band V) 8,9
- 2,3,5,10 Case ground

Please read cautions and warnings and important notes at the end of this document.

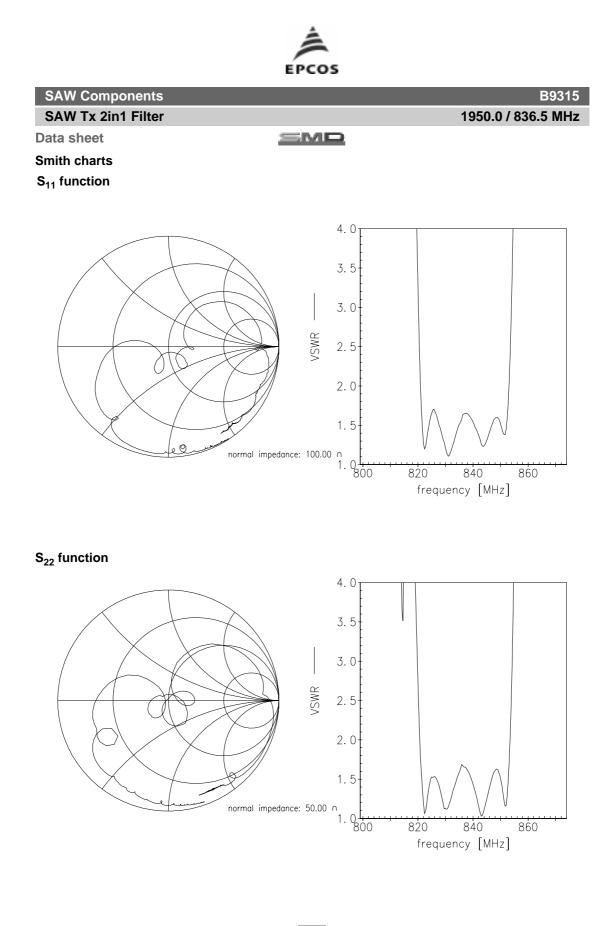
June 16, 2006



SAW Components					B931
SAW Tx 2in1 Filter				1950.0 /	836.5 MH
Data sheet					
Characteristics					
Temperature range for specification: $T = -15 \degree C$ to $+80 \degree C$ Terminating source impedance: $Z_S = 100 \Omega$ (balanced)Terminating load impedance: $Z_L = 50 \Omega$ (unbalanced)					
		min.	typ. @ 25 °C	max.	
Center frequency	f	c —	836.5	—	MHz
Maximum insertion attenuation 824.0 849		/max	1.5	2.1 ¹⁾	dB
Amplitude ripple (p-p) 824.0 849		.α	0.5	1.2	dB
Amplitude ripple per 5 MHz ch 824.0 849		Δα _{5MHz} —	0.5	0.7	dB
Group delay ripple per 5 MHz o 824.0 849	,	Δτ	20	40	ns
Input VSWR 824.0 849	.0 MHz	_	1.7	2.0	
Output VSWR 824.0 849	.0 MHz	_	1.7	2.0	
Input amplitude balance (S ₃₁ /s 824.0 849		-1.0	_	1.0	dB
Input phase balance $(\phi(S_{31}) - \phi(S_{31})) = \phi(S_{31}) = \phi(S_{3$		-10	_	10	o
Attenuation 0.3 779 779.0 804 869.0 1570 1570.0 1580 1580.0 2547	.0 MHz .0 MHz .0 MHz	35 25 33 43	43 32 37 48 43	 	dB dB dB dB dB
1580.0 2547 2547.0 6000		35 25	43 35		dB dB


¹⁾ 2.3 dB for T = -30 °C to +85 °C

Please read *cautions and warnings and important notes* at the end of this document.



Transfer function (wideband)

4

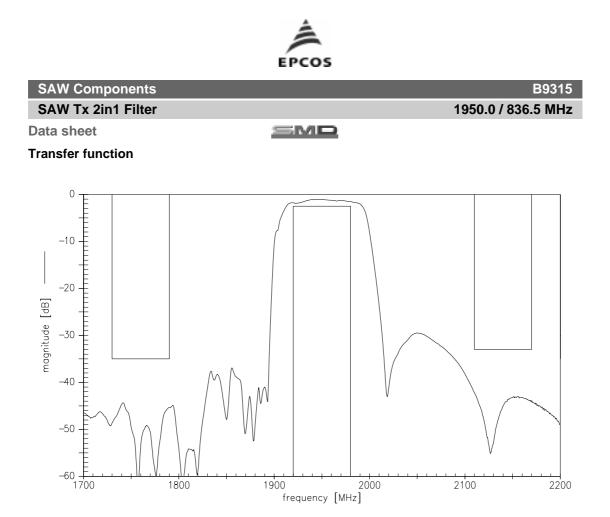
Please read *cautions and warnings and important notes* at the end of this document.

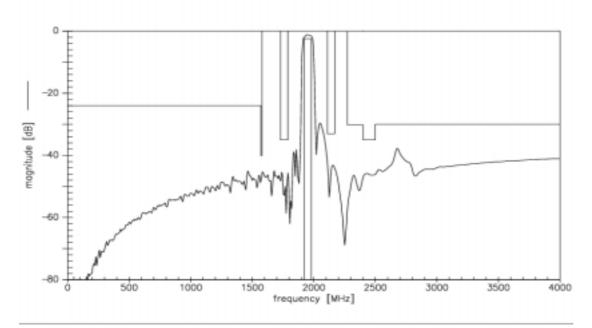
Please read *cautions and warnings and important notes* at the end of this document.

June 16, 2006

SAW Components				B9315
SAW Tx 2in1 Filter				1950.0 / 836.5 MHz
Data sheet		$\leq M$		
Maximum ratings				
Operable temperature range	Т	-30/+85	°C	
Storage temperature range	T _{stg}	-40/+85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V _{ESD}	50 ¹⁾	V	Machine model, 10 pulses
Input power at	-			
WCDMA Band V	P _{IN}	10	dBm	continuous wave
				@ +55°C ambient
Tx band				

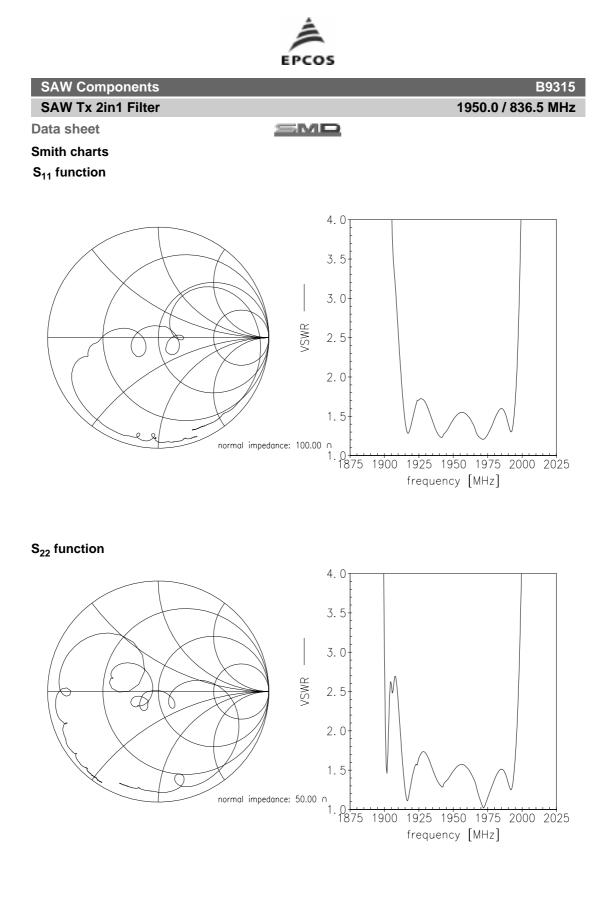
¹⁾ acc. to JESD22-A115A (machine model), 10 negative & 10 positive pulses.


June 16, 2006


SAW Components SAW Tx 2in1 Filter				1950.0 /	B9 836 5
	<u>MD</u>			1950.07	030.0
Characteristics					
	F 47	- °O (-	00 °O		
Temperature range for specification:T= -15 °C to $+80$ °CTerminating source impedance: $Z_S = 100 \Omega$ (balanced) 33 nHTerminating load impedance: $Z_L = 50 \Omega$ (unbalanced)					
		min.	typ. @ 25 °C	max.	
Center frequency	f _C	—	1950.0		MHz
Maximum insertion attenuation	α_{max}				
1920.0 1980.0 MHz	max	—	1.9	2.5 ¹⁾	dB
Amplitude ripple (p-p)	Δα				
1920.0 1980.0 MHz	20	—	0.9	1.5	dB
Amplitude ripple per 5 MHz channel (p-p) 1920.0 1980.0 MHz	$\Delta lpha_{5 MHz}$		0.4	0.6	٩D
1320.0 1300.0 10112			0.4	0.6	dB
Group delay ripple per 5 MHz channel (p-p) Δτ				
1920.0 1980.0 MHz		—	10	20	ns
Input VSWR					
1920.0 1980.0 MHz		_	1.7	2.2	
Output VSWR 1920.0 1980.0 MHz		_	1.7	2.2	
			1.7	2.2	
Input amplitude balance (S_{31}/S_{21})					
1920.0 1980.0 MHz		-1.0		1.2	dB
Input phase balance $(\phi(S_{31}) - \phi(S_{21}) + 180^{\circ})$					
1920.0 1980.0 MHz		-10	-	10	•
Attenuation	α				
0.3 1570.0 MHz	~	24	45		dB
1570.0 1580.0 MHz		40	45	—	dB
1730.0 1790.0 MHz		35	45		dB
2110.0 2170.0 MHz		33	40	—	dB
2250.0 2400.0 MHz		30	40	—	dB
2400.0 2500.0 MHz		35	46		dB
2500.0 6000.0 MHz		30	38	_	dB

¹⁾ 2.7 dB for T = -30 °C to +85 °C

Please read *cautions and warnings and important notes* at the end of this document.



Transfer function (wideband)

8

Please read *cautions and warnings and important notes* at the end of this document.

Please read *cautions and warnings and important notes* at the end of this document.

June 16, 2006

SAW Components				B9315
SAW Tx 2in1 Filter				1950.0 / 836.5 MHz
Data sheet		\equiv M		
Maximum ratings				
Operable temperature range	Т	-30/+85	°C	
Storage temperature range	T _{stg}	-40/+85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V _{ESD}	50 ¹⁾	V	Machine model, 10 pulses
Input power at	-			
WCDMA Band I	P _{IN}	10	dBm	continuous wave
				@ +55°C ambient
Tx band				

¹⁾ acc. to JESD22-A115A (machine model), 10 negative & 10 positive pulses.

1950.0 / 836.5 MHz

SAW Tx 2in1 Filter

SMD

Data sheet

References

Туре	B9315
Ordering code	B39202B9315N410
Marking and package	C61157-A7-A1
Packaging	F61074-V8152-Z000
Date codes	L_1126
S-parameters	B9315_LB_NB.s3p B9315_LB_WB.s3p B9315_UB_NB.s3p B9315_UB_WB.s3p
Soldering profile	S_6001
RoHS compatible	defined as compatible with the following documents: "DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. 2005/618/EC from April 18th, 2005, amending Directive 2002/95/EC of the European Parliament and of the Council for the purposes of establishing the maxi- mum concentration values for certain hazardous substances in electrical and electronic equipment."

For further information please contact your local EPCOS sales office or visit our webpage at www.epcos.com .

Published by EPCOS AG

Surface Acoustic Wave Components Division P.O. Box 80 17 09, 81617 Munich, GERMANY

 $\ensuremath{\mathbb{C}}$ EPCOS AG 2006. This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Please read *cautions and warnings and important notes* at the end of this document.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, CeraDiode, CSSP, PhaseCap, PhaseMod, SIFI, SIKOREL, Silver-Cap, SIMID, SIOV, SIP5D, SIP5K, TOPcap, UltraCap, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

